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Abstract
We present an extension of the phenomenological pseudogap model proposed
by Rodrı́guez-Núñez et al (2005 J. Phys.: Condens. Matter 17 323) which
relies on the assumption that the self-energy is given by �PG(iωn) =
−E2

G(k)G0(k,−iωn), where G0(k, iωn) is the one-particle free Green function.
Going beyond this mean-field model for the pseudogap we now take into
account fluctuations of the pseudogap as �PG(iωn) = −E2

G(k)GPG(k,−iωn),
where GPG(k, iωn) is the pseudogap one-particle Green function and EG(�k) is
the value of the pseudogap parameter. We study the combined effect of α′,
the second-nearest neighbour in the band structure (ε(�k) = −2t[cos(kx) +
cos(ky)] + 4tα′ cos(kx) cos(ky)) and the cutoff frequency, ωD, on the
superconducting critical temperature, Tc, as a function of the number of carriers
per site, n. The effect of V/t and ωD/t is to increase the value of Tc/t , while
α′ displaces Tc,max/t away from half-filling.

1. Introduction

Originally discovered by Bednordz and Müller [1] in 1986, the high-temperature
superconductors (HTSCs) are still attracting a lot of interest due to their unusual physical
properties, both in the normal and superconducting phases. For example, the HTSCs exhibit a
pseudogap in the energy spectrum for temperatures in the interval 0 � T � T ∗. T ∗ is defined
by Maier et al [2] as the crossover temperature with maximum spin susceptibility. Experimental
evidence suggests that the pseudogap exists below Tc, independently of the superconducting
gap [3]. This agrees with energy gap evolution experiments in the tunnelling spectra of
Bi2Sr2CaCu2O8+δ performed by Dipasupil et al [4]. They find that a pseudogap smoothly
develops into the superconducting state gap without any tendency to close at Tc. However,
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intrinsic tunnelling spectroscopy shows evidence that the pseudogap and the superconducting
order parameters are independent of each other [5–7].

There have been various theoretical approaches which try to explain the pseudogap
opening mechanism [8]. However, having assumed the presence of the pseudogap, an
understanding of its effects on the main superconducting state properties and macroscopic
quantities such as the critical temperature Tc/t and the order parameter is yet to be achieved.
Recently Kosuge et al [8] proposed a phenomenological model where the pseudogap is assumed
to appear due to a BCS-type mechanism. Our purpose in this paper is to extend these ideas to
include pseudogap fluctuations.

We take the pseudogap self-energy as [8]

�PG(�k, iωn) = −E2
G(

�k)GPG(�k,−iωn), (1)

where EG(�k) ≡ EG φ(�k) and φ(�k) ≡ 1, cos(kx) − cos(ky) for s-, d-wave order parameter
symmetry, respectively. EG is the value of the pseudogap parameter. G(�k, iωn) is the
pseudogap one-particle Green function, ωn = Tπ(2n + 1) is the odd Matsubara frequency
and T is the absolute temperature.

According to [8], EG can be calculated from superconducting fluctuations beyond a mean-
field approximation. In the T -matrix formalism [9–12], the self-energy is a bubble-diagram
involving G and the correlator, i.e., the T -matrix itself. If one assumes that the pairing
fluctuations represented by the latter are strongly concentrated around zero frequency and zero
wavevector (which should be valid close to Tc) one obtains equation (1) for the self-energy. In
consequence, in [8–12] equation (1) is fully justified. In the T -matrix formalism, the pseudogap
model goes beyond the mean-field approximation because it includes the renormalized Green
function, G(�k, iωn). Additionally, in the T -matrix formalism developed numerically in [9–12],
it is shown that Tc and EG (the pairing energy scale in [9]) are different for high values of
pairing interaction.

This paper is organized as follows. Section 1 is devoted to an introduction and justification
of the pseudogap energy scale. In section 2 we justify our proposed self-energy (equation (1))
following [8–12]. Using the pseudogap self-energy (equation (1)), which is valid close to Tc

in the T -matrix formalism, we derive the diagonal one-particle Green function, G(iωn, �k). In
section 3 we present our numerical results and we conclude in section 4. In section 5 we give
an outlook of our future work.

2. The pseudogap model beyond mean field

According to the perturbation theory of two-dimensional (2D) superconducting fluctuations
developed by Kosuge et al [8], higher-order corrections are included by expanded terms of
χRPA(�q, iωm). Therefore the one-particle Green function G(�k, iωn) is given by (following their
notation)

G(1)( �p, iωn) = 1

iωn + μ− ε( �p)− ∑(1)
( �p, iωn)

�(1)( �p, iωn) = −
2
f × G(1)(− �p,−iωn)


2
f ≡ T

N

∑

�q
K (1)

1 (�q, 0)

K (1)
1 (�q, iωn) = g2 χ(�q, iωn)

1 + g χ(�q, iωn)
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χ(�q, iωn) ≡ T

N

∑

�p,m
G(1)( �p, i�m)G

(1)( �p, iωn −�m).

In consequence, in the formalism of Kosuge et al [8], one can, in principle, calculate 
 f

self-consistently. EG ≡ 
 f is the pseudogap energy scale and G(1)(�k, iωn) = GPG(�k, iωn).
We take equation (1) as our starting point with EG(�k) a fixed parameter. Although Kosuge
et al’s equations are not used in the remainder of this paper, we have included them to show
that the PG order parameter is justified in their formalism.

Now our starting Hamiltonian is given by [13]5

Ĥ =
∑

i, j;σ
ti, j c

+
i,σ c j,σ − U

∑

i

c+
i,↑c+

i,↓ci,↓ci,↑ − V
∑

〈i, j〉
c+

i,↑c+
j,↓ci,↓c j,↑ (2)

where U, V are the on-site and on-nearest-neighbours attraction, respectively. U and V allow
for the presence of s- and d-wave order parameter symmetries, respectively. In equation (2), ti, j

represents the hopping matrix elements on a 2D plane and 〈i, j〉 means next-nearest neighbours.
The T -matrix for the Hubbard model consists of the sum of the particle–particle ladder

diagrams in the perturbation expansion in terms of U (local attraction). It is known that the
T -matrix is the ladder approximation to the Bethe–Salpeter equation [14]

T (�q, iεm) = −U

1 − Uχ(�q, iεm)
, (3)

where χ(�q, iεm) is the independent pairing susceptibility given by

χ(�q, iεm) = 1

Nβ

∑

�k,iωn

G(�k, iωn)G(�q − �k, iεm − ωn), (4)

where ωn = π(2n + 1)/β and εm = 2πm/β , (n = m = 0,±1,±2, . . .) are the fermionic
(odd) and bosonic (even) Matsubara frequencies, respectively, and β = (kBT )−1 is the inverse
of the absolute temperature. This approximation is supposed to be valid in the low-density limit.
The corresponding one-particle Green function satisfies the Dyson equation. In the T -matrix
approach the self-energy �(�k, iωn) is given by

�(�k, iωn) = 1

Nβ

∑

�q,iεm

T (�q, iεm)G(�q − �k, iεm − ωn), (5)

which closes the system of self-consistent equations. The results for real frequencies are
obtained upon the analytic continuation, namely, iωn → ω + i0+.

Within the T -matrix formalism of [9–12] (especially equation (5) of [9] and equation (5))
we can obtain the pseudogap self-energy (equation (1)), with EG ≡ 1/(Nβ)

∑
�q,m T (�q, iεm),

by considering that the small values of �q and εm give the main contribution to the summation,
where εm are even Matsubara frequencies. Thus, we are able to justify our proposal given
by equation (1), within the T -matrix formalism, for the case of s-wave symmetry (only the
presence of U ). The case of V follows a similar treatment.

By including the pseudogap self-energy (equation (1)) into the pseudogap Green function

GPG(�k, iωn) = [iωn + μ− ε(�k)− �PG(�k, iωn)]−1 (6)

one obtains

GPG(�k, ω) =
[
ω + ε(�k)− μ

2E2
G(

�k)

]⎡

⎣1 −
√

1 − 4E2
G(

�k)
ω2 − [ε(�k)− μ]2

⎤

⎦ . (7)

5 These authors were the first to propose this Hamiltonian and to study it extensively, even today, in mean-field theory.
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We point out that the solution of the one-particle renormalized Green function, GPG(�k, ω),
in the presence of the pseudogap, is obtained by solving a quadratic equation for GPG(�k, ω).
Out of the two solutions of this equation we have chosen the one that allows us to obtain the
one-particle free Green function in the limit EG → 0, namely, limEG→0 GPG(�k, ω) = G0(�k, ω).

According to experimental data in the HTSCs, the pseudogap phase enters into the
superconducting phase and becomes zero at a critical doping of xc = 0.19 (with x = 1.0–
n), where n is the number of carriers per site. As shown by Wuyts et al [15], the succession
of Knight shift curves 89Ks(T ) obtained by Alloul [16] for different doping states across the
underdoped regime may be scaled to a single function of T/EG. See also [17]. These fall
linearly to zero at the critical doping of xc = 0.19 and rise to the magnitude of the exchange
energy, J , as x → 0. We point out that the optimal doping is xopt = 0.15. This leads us
to consider the effect of the PG energy scale on the superconducting properties, namely, Tc

(studied in this paper) and the superconducting order parameter, 
(T ).
In the presence of a pseudogap (EG �= 0) within the superconducting phase, we need to

solve the Gorkov’s equations:

G−1
PG(

�k, iωn)G(�k, iωn)+
(�k)F(�k, iωn) = 1 (8)

G−1
PG(

�k,−iωn)F(�k, iωn)+
(�k)G(�k, iωn) = 0, (9)

where G−1
PG(

�k, iωn) ≡ 1/GPG(�k, iωn) and GPG(�k, iωn) is the pseudogap one-particle Green
function, equation (7). G(�k, iωn) and F(�k, iωn) are the diagonal and off-diagonal one-particle
Green function in the superconducting phase, namely, for 0 � T � Tc, in the Nambu
formalism.

Now, taking into account the scenario where the pseudogap survives in the
superconducting state, we obtain the superconducting critical temperature, Tc, and the chemical
potential, μ, from the two mean-field self-consistent equations

π2 = V Tc

∫

d2k φ2(�k) ψ(�k)
∑

n

GPG(�k, iωn)GPG(�k,−iωn) (10)

n π2 = Tc

∫

d2k
∑

n

GPG(�k, iωn), (11)

where n is the number of carriers per site, φ(�k) = cos(kx) − cos(ky) and ψ(�k) = 1 if
|ε(�k) − μ| � ωD (0 otherwise), where ωD is the cutoff frequency. We adopt the following
2D tight binding structure ε(�k) = −2 t [cos(kx)+ cos(ky)] + 4 t α′ cos(kx) cos(ky), where t is
the next-nearest hopping and t ′ = α′ × t is the second-nearest hopping matrix element.

We have performed the Matsubara summation numerically, due to the fact that the
pseudogap Green function, GPG(�k, iωn), does not have a simple pole structure dependence
on ωn . However, we have expressed our �k-summation in a 2D integration in the usual way. In
section 3, we present our results by solving the two coupled equations given previously, i.e.,
equations (10) and (11).

3. Numerical results

Due to the fact that our normal Green function has been approximated with a self-energy
(equation (1)), which is beyond mean-field theory, we expect that the normal density of states
(NDOS) even in the presence of the pseudogap (EG �= 0) is going to produce a zero density of
states only at ω = 0. This result is independent whether we choose a s- or d-wave symmetry
for the pseudogap order parameter. More specifically, the form of the density of states for both
symmetries is d-type around the Fermi level.
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Figure 1. N(ω) × ω for s-wave symmetry (both for the pseudogap and the superconducting order
parameters) with α′ = 0.0, and several values of EG/t , namely, EG/t = 0.00, 0.50, 1.00, 2.00 and
5.00. We see that the symmetry around ω = 0 is kept due to the fact that α′ = 0 and μ = 0.

Before presenting our numerical results, we define some quantities which are useful in
photoemission experiments. They are the spectral function, A(�k, ω), and the density of states,
N(ω). They are given by

A(�k, ω) = − 1

π
lim
δ→0+

Im[G(�k, ω + iδ)]
N(ω) = 1

π2

∫ π

0
d2k A(�k, ω).

(12)

In figures 1 and 2 we present the density of states, N(ω)×ω, for s- and d-wave symmetry,
respectively, for both the pseudogap and the superconducting order parameters. For these
figures we have chosen α′ = 0, and several values of the pseudogap parameter ratio, namely,
EG/t = 0.00, 0.50, 1.00, 2.00 and 5.00. As we can see, as α′ = 0, the symmetry around
half-filling, n = 1.00 or ω = 0.00, is kept.

Comparing the two densities of states of figures 1 and 2 we observe that, except for details
in the high-energy sector, for frequencies ω ≈ 0.0 we have a d-type pseudogap behaviour in
that frequency range. For example, the density of states for d-wave symmetry is more extended
than the density of states for s-wave symmetry. Approximating the full density of states for
a linear behaviour around ω ≈ 0 is useful for performing analytical calculations, as done by
Ţifrea et al [20]. We recall that the pseudogap behaviour has also been obtained by numerical
simulations in the attractive Hubbard model [21–25].

In figure 3 we show the superconducting critical temperature, Tc × n (upper panel),
and μ × n (lower panel) for a d-wave symmetry (for both order parameters) with α′ = 0,
ωD/t = 0.50 and EG/t = 0.50 for several values of the pairing potential, namely, V/t = 4.50,
5.00, 5.50 and 6.00. From this figure it is clear that for a fixed value of V/t we should have
two regions of n, to each side of half-filling, where we find superconductivity. That is the
reason that we have decided to look more carefully in the parameter phase space (see figure 4).
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Figure 2. Same as figure 1 for d-wave symmetry.

After carefully searching the possible existence of two superconducting regions to both sides of
half-filling we came to the conclusion that this is not the case. More precisely, we have found
that we need reasonably large values of V/t to have superconductivity in a certain region of
carrier number and after some value of V/t we have two regions with high values of Tc/t (two
bumps, let us say) and an intermediate region with small values of the superconducting critical
temperature. As we can see, when all this structure appears, superconductivity exists in the
whole region of carrier number. In figure 4 we present the results of our search for the question
posed after the results obtained in figure 3. Here, we plot Tc × μ (upper panel) and n × μ

(lower panel) for a d-wave symmetry (for both order parameters) with α′ = 0, ωD/t = 0.50
and EG/t = 0.40 for several values of the pairing potential, namely, V/t = 6.25, 6.30, 6.35,
6.40, 6.45 and 6.50.

To see the breaking of symmetry of N(ω) × ω, around ω = 0, we present the s-wave
symmetry density of states for a set of parameters as given in figure 5. We have fixed the value
of EG/t to 2.0, while we change the values of (α′, μ), as indicated in the figure.

In figure 6 we show the superconducting critical temperature, Tc×n (upper panel) andμ×n
(lower panel) for an s-wave symmetry (for both order parameters) with α′ = 0, ωD/t = 0.50
and EG/t = 0.50 for several values of the pairing potential, namely, V/t = 6.00, 6.50, 7.00,
7.50. We see that the symmetry around half-filling is kept due the fact that α′ = 0. We also see
that higher values of V are needed to obtain finite values of Tc.

By comparing figures 3 and 6, for d- and s-wave symmetries, respectively, we observe that
they look completely different. For example, for the d-wave symmetry we have two maxima
instead of one as is the case for the s-wave symmetry. This is likely due to the different structure
of the density of states (figures 1, 2). For the case of d-wave symmetry the density of states is
discontinuous at ω = ±4t and this gives rise to the additional maxima in the plot of Tc × n for
low concentrations of n and large values of V/t . In consequence, the underlying symmetry has
an important role in the resulting phase diagram.
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Figure 3. The superconducting critical temperature, Tc × n (upper panel) and μ× n (lower panel)
for a d-wave symmetry (for both order parameters) with α′ = 0, ωD/t = 0.50 and EG/t = 0.50
and for several values of the pairing potential, namely, V/t = 4.50, 5.00, 5.50 and 6.00. From
this figure it appears that for a fixed value of V/t we should have two regions of n, to each side of
half-filling, where we find superconductivity.

Now we study the effect of second-nearest hopping, i.e., α′ �= 0. In figure 7 we show
Tc × n for a d-wave symmetry, with α′ = +0.20, ωD/t = 0.5 and several values of the pairing
potential, namely, V/t = 3.00, 3.30, 4.00, and 4.50. We see that the effect of a positive α′ is to
displace the curve of Tc to the left, with respect to the one at half-filling.

4. Conclusions

Our conclusions have to be drawn from figures 1–7. The first thing to realize is that by adopting
equation (1), our normal state Green function always produces d-wave superconductivity (see
figures 1 and 2) around ω = 0. Then it is sound to say that our pseudogap model is a d-wave
model for the density of states around the Fermi level, at T = Tc. Below Tc we have to be
careful about the symmetry of the density of states.

In figure 3 we present Tc×n andμ×n for a d-wave symmetry, with α′ = 0.0, ωD/t = 0.50
and EG/t = 0.50 for several values of V/t = 4.50, 5.00, 5.50 and 6.00. (t has been taken
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Figure 4. The superconducting critical temperature, Tc × μ (upper panel) and n × μ (lower panel)
for a d-wave symmetry (for both order parameters) with α′ = 0, ωD/t = 0.50, EG/t = 0.40 and
V/t = 6.25, 6.30, 6.35, 6.40, 6.45 and 6.50.

the energy unit.) From this figure we observe that the symmetry around n = 1 is kept, since
α′ = 0. We also observe that for some small values of V/t , there is no superconductivity,
namely, Tc/t = 0, in a range of carrier concentration. From the lower panel of figures 3–7, we
see that μ does not change appreciably with the considered values of V/t . In these figures 3–7,
we see that the parameter controlling the symmetry around half-filling is α′. Thus, α′ = +0.20
displaces the centre of Tc × n to the left of n = 1.0.

We have solved numerically our two coupled self-consistent equations (10) and (11) for Tc

and μ versus n for several values of (1) the pseudogap parameter, EG/t ; (2) the second-nearest
hopping ratio, α′; (3) the Debye frequency, ωD/t ; and (4) the pairing interaction, V/t . The
results we find are the following.

(1) Increasing the value of V/t increases the value of Tc/t , since it produces superconductivity
in any channel.

(2) Increasing the value of EG/t decreases the value of Tc/t . This has as consequence, in the
case of a pseudogap dependent on carrier number, that Tc/t decreases in a very defined
region of the phase space. One needs some critical value of V/t to have finite values of
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Figure 5. N(ω) × ω for an s-wave symmetry (both for the pseudogap and the superconducting
order parameters) with EG/t = 2.0, and several pair values of (α′, μ).

Tc/t . This is the reason we have taken high values of V/t to find superconductivity. See
figures 3–6.

(3) Decreasing the value of ωD/t decreases the value of Tc/t . This is reasonable since
we have fewer available states around the Fermi sea which contribute to the integral in
equation (10).

(4) The inclusion of α′, which we call the effect of the band structure, is important because it
moves the centre of the Tc/t ×n curve. The centre of this curve, with respect to half-filling
(n = 1), is displaced to the left (right) if α′ > 0.0 (<0).

(5) The chemical potential is defined in the region where Tc/t �= 0. However, in this region,
it is almost identical for different values of V/t . This is due to the fact that μ is a global
property and it depends on the number of carriers.

(6) Our model always produces d-wave superconductivity around the Fermi level, at Tc.

In short, we have checked that the band structure parameters α′ and ωD influence the value
of Tc. In particular, α′ �= 0 breaks the symmetry around half-filling and ωD decreases the value
of Tc. In our model of a pseudogap, beyond mean-field theory, EG �= 0 also decreases the
value of Tc. Also, for EG �= 0 we have Tc(n) �= 0 in an interval of n. These global results
are in qualitative agreement with those in [19]. However, the dynamical properties such as the
spectral function and the density of states (among others) are very different from those in [19],
namely,

�PG(�k, iωn) = −E2
G(

�k)G0(�k,−iωn), (13)

with G0(�k, iωn) been the one-particle free Green function. We should mention that the
approximation given by equation (13) gives a semiconductor-type of gap for EG(�k)/t =
EG/t = constant. However, for EG(�k)/t = (EG/t)[cos(kx)−cos(ky)] the pseudogap produces
a d-symmetry in the density of states. This was used in [20].



11570 J J Rodrı́guez-Núñez et al

Figure 6. Tc × n (upper panel) and μ × n (lower panel) for an s-wave symmetry (both for
the pseudogap and the superconducting order parameters) with α′ = 0.0, ωD/t = 0.50 and
EG/t = 0.50 for several values of V/t , namely, V/t = 6.00, 6.50, 7.00 and 7.50. The symmetry
around half-filling (n = 1) is kept due to the fact that α′ ≡ 0.

In this work we have considered the pseudogap order parameter coexisting and competing
with the superconducting order parameter, both of the same symmetry, justifying equation (1)
in the T -matrix formalism, which is valid for low values of n ≈ 0 and for large values of
n ≈ 2, respectively. To mimic the phase diagram of the HTSCs we should include α′ �= 0,
which displays the phase diagram to the right or the left, depending on the sign of α′.

We should say a few words about the approximation used. We have considered a mean-
field approximation (MFA) for the superconductivity, not for EG. In consequence, Tc does not
need to go to zero. In this MFA we may consider that our Tc refers to a quasi-2D lattice or a
truly 3D lattice.

We should end by saying that in this paper we have taken T ∗ ≡ EG. However, we have
neglected any doping dependence of EG. This is left for future work [26]6.

6 We only say that in this case the curve Tc ×n shows a deviation from parabolicity in the region where the pseudogap
energy scale changes with doping.
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Figure 7. Same as figure 6 for a d-wave symmetry for α′ = +0.20 and V/t = 3.00, 3.50, 4.00 and
4.50. The symmetry around half-filling (n = 1) is broken due to the presence of the second-nearest
hopping term, namely, α′ �= 0.

5. Outlook

Now, with respect to the outlook, we would like to do the following.

(1) Calculate the isotope exponent, α, as a function of n. α is given from the following
expression: Tc ≈ M−α , where M is the isotope mass of the ions. Naturally, all the
kinks which appear in the Tc × n curve are going to produce rapid changes in the isotope
exponent [18].

(2) Calculate
(T )× T , for fixed values of n, V/t , EG/t and α′.
(3) Calculate the BCS–BEC (Bose–Einstein condensation) crossover line, as was done

in [18]. In particular, we would like to find the so-called metallic state phase, which is
characterized by 
0 = 0 [18].

(4) Calculate the superconducting properties, namely, the order parameter as function of
temperature, below Tc, under the presence of the competing pseudogap order parameter.

(5) Reproduce the phase diagram, namely, Tc/t versus n, for the HTSCs. We believe that, for
accomplishing this, we have to include second- and third-nearest neighbours.
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Figure 8. The s-wave symmetry spectral density A(�k, ω) × ω for several values of kx and ky :
α′ = 0, μ = 0.0, EG/t = 1.00 and δ = 10−5.

In order to go from the discrete version for ωn , the Matsubara frequency representation,
we need to perform the spectral theorem for the Green function as follows:

G(�k, iωn) =
∫ +∞

−∞
A(�k, z) dz

z − iωn
. (14)

By performing the Matsubara frequency summation, equation (10) becomes

π2 = V
∫

d2k φ2(�k) ψ(�k)
∫ +∞

−∞
dω

+∞∑

−∞
dω′ APG(�k, ω) APG(�k, ω′)( f (ω)− f (ω′))

ω − ω′ (15)

n π2 =
∫

d2k
∫ +∞

−∞
dω APG(�k, ω). (16)
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Figure 9. Same as figure 8 for d-wave symmetry.

While the spectral function, A(�k, ω), has very delicate structure (see figures 8 and 9),
we prefer this form (equation (16)) to the one given by equation (11), due to the fact that
it is expressed by integrals and numerical quadrature routines solve these equations quickly
and with the desired accuracy. Also, we prefer integration over direct summation because the
results will not depend on the number of Matsubara frequencies. In figures 8 and 9, we show the
spectral function along kx and ky axes, for several parameters of the theory. As we can see, the
spectral function has properties of quasi-particle behaviour (peak behaviour) and non-coherent
behaviour (round behaviour). These features are valid for both s- and d-wave symmetries.

In figure 10 we present A(�k, ω)×ω and kx for several values of ky . In this figure, we have
the following parameters: α′ = 0, μ = 0.00, EG/t = 0.01 and δ = 10−8. For this value of
EG/t = 0.01, the spectral function is almost a set of delta functions. This is so because the
pseudogap parameter is really small.
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Figure 10. The s-wave symmetry spectral density A(�k, ω) × ω and kx for several values of ky :
α′ = 0, μ = 0.00, EG/t = 0.01 and δ = 10−8. As we see, for this value of EG/t = 0.01, the
spectral function is almost a set of delta functions. Therefore, we have the almost free case due to
the small value of the pseudogap value.

(This figure is in colour only in the electronic version)
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